Electromagnetismo - Mapa Mental

Electromagnetismo

r

Electromagnetismo: es la rama de la física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría

fenómenos eléctricos y magnéticos

r

 La interacción electromagnética es una de las cuatro fuerzas fundamentales del universo conocido. Las partículas cargadas interactúan electromagnéticamente mediante el intercambio de fotones.

Magnetismo

r

es un fenómeno natural. Hay algunos materiales conocidos que tienen propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes.

electricidad

r

es el conjunto de fenómenos físicos relacionados con la presencia y flujo de cargas eléctricas. 

Padres del electromagnetismo

r

Los fundamentos de la teoría electromagnética fueron presentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell en 1865. La formulación consiste en cuatro ecuaciones diferenciales vectoriales que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales , conocidas como ecuaciones de Maxwell, lo que ha sido considerada como la segunda gran unificación de la física, siendo la primera realizada por Isaac Newton.

Michael Faraday

r

fue un físico y químico británico que estudió el electromagnetismo y la electroquímica. Sus principales descubrimientos incluyen la inducción electromagnética, el diamagnetismo y la electrólisis.

James Clerk Maxwell

r

fue un científico escocés especializado en el campo de la física matemática. Su mayor logro fue la formulación de la teoría clásica de la radiación electromagnética, que unificó por primera vez la electricidad, el magnetismo y la luz como manifestaciones distintas de un mismo fenómeno.​ Las ecuaciones de Maxwell, formuladas para el electromagnetismo, han sido ampliamente consideradas la “segunda gran unificación de la física”, siendo la primera aquella realizada por Isaac Newton.

Ecuaciones de Maxwell

r

Las ecuaciones de Maxwell son un conjunto de cuatro ecuaciones (originalmente 20 ecuaciones) que describen por completo los fenómenos electromagnéticos. La gran contribución de James Clerk Maxwell fue reunir en estas ecuaciones largos años de resultados experimentales, debidos a Coulomb, Gauss, Ampere, Faraday y otros, introduciendo los conceptos de campo y corriente de desplazamiento, unificando los campos eléctricos y magnéticos en un solo concepto: el campo electromagnético.

Ley de Gauss

r

La ley de Gauss explica la relación entre el flujo del campo eléctrico a través una superficie cerrada con la carga neta encerrada por dicha superficie. Se define como flujo eléctrico () a la cantidad de fluido eléctrico que atraviesa una superficie dada. Análogo al flujo de la mecánica de fluidos, este fluido eléctrico no transporta materia, pero ayuda a analizar la cantidad de campo eléctrico () que pasa por una superficie S. Matemáticamente se expresa como:

Ley de Gauss para el campo magnético

r

Experimentalmente se llegó al resultado de que los campos magnéticos, a diferencia de los eléctricos, no comienzan y terminan en cargas diferentes. Esta ley primordialmente indica que las líneas de los campos magnéticos deben ser cerradas. En otras palabras, se dice que sobre una superficie cerrada, sea cual sea esta, no seremos capaces de encerrar una fuente o sumidero de campo, esto expresa la inexistencia del monopolo magnético. Al encerrar un dipolo en una superficie cerrada, no sale ni entra flujo magnético, por lo tanto el campo magnético no diverge, no sale de la superficie. Entonces la divergencia es cero.donde es la densidad de flujo magnético, también llamada inducción magnética. Es claro que la divergencia sea cero porque no salen ni entran vectores de campo sino que este hace caminos cerrados. El campo no diverge, es decir la divergencia de B es nula.

Ley de Faraday

r

La ley de Faraday nos habla sobre la inducción electromagnética, la que origina una fuerza electromotriz en un campo magnético. Es habitual llamarla ley de Faraday-Lenz en honor a Heinrich Lenz ya que el signo menos proviene de la Ley de Lenz. También se le llama como ley de Faraday-Henry, debido a que Joseph Henry descubrió esta inducción de manera separada a Faraday pero casi simultáneamente. Lo primero que se debe introducir es la fuerza electromotriz (), si tenemos un campo magnético variable con el tiempo, una fuerza electromotriz es inducida en cualquier circuito eléctrico; y esta fuerza es igual a menos la derivada temporal del flujo magnético, así:como el campo magnético es dependiente de la posición tenemos que el flujo magnético es igual a:Además, el que exista fuerza electromotriz indica que existe un campo eléctrico que se representa como:con lo que finalmente se obtiene la expresión de la ley de Faraday:Lo que indica que un campo magnético que depende del tiempo implica la existencia de un campo eléctrico, del que su circulación por un camino arbitrario cerrado es igual a menos la derivada temporal del flujo magnético en cualquier superficie limitada por el camino cerrado.El signo negativo explica que el sentido de la corriente inducida es tal que su flujo se opone a la causa que lo produce, compensando así la variación de flujo magnético.

Ley de Ampère generalizada

r

Ampère formuló una relación para un campo magnético inmóvil y una corriente eléctrica que no varía en el tiempo. La ley de Ampère nos dice que la circulación en un campo magnético () a lo largo de una curva cerrada C es igual a la densidad de corriente () sobre la superficie encerrada en la curva C, matemáticamente así:donde es la permeabilidad magnética en el vacío.

Ramas

r

La teoría electromagnética se puede dividir en electrostática el estudio de las interacciones entre cargas en reposo y la electrodinámica el estudio de las interacciones entre cargas en movimiento y la radiación. La teoría clásica del electromagnetismo se basa en la fuerza de Lorentz y en las ecuaciones de Maxwell.

Electrostática

r

La electrostática es el estudio de los fenómenos asociados a los cuerpos cargados en reposo. Como describe la ley de Coulomb, estos cuerpos ejercen fuerzas entre sí. Su comportamiento se puede analizar en términos de la idea de un campo eléctrico que rodea cualquier cuerpo cargado, de manera que otro cuerpo cargado colocado dentro del campo estará sujeto a una fuerza proporcional a la magnitud de su carga y de la magnitud del campo en su ubicación.

Magnetostática

r

La presencia de una corriente eléctrica, o sea, de un flujo de carga debido a una diferencia de potencial, genera una fuerza magnética que no varía en el tiempo. Si tenemos una carga q a una velocidad , en un campo magnético  aparecerá una fuerza magnética inducida por el movimiento en esta carga, así:

Electrodinámica clásica

r

La electrodinámica es el estudio de los fenómenos asociados a los cuerpos cargados en movimiento y a los campos eléctricos y magnéticos variables. Dado que una carga en movimiento produce un campo magnético, la electrodinámica se refiere a efectos tales como el magnetismo, la radiación electromagnética, y la inducción electromagnética, incluyendo las aplicaciones prácticas, tales como el generador eléctrico y el motor eléctrico. Esta área de la electrodinámica, conocida como electrodinámica clásica, fue sistemáticamente explicada por James Clerk Maxwell, y las ecuaciones de Maxwell describen los fenómenos de esta área con gran generalidad.

Electrodinámica relativista

r

Clásicamente, al fijar un sistema de referencia, se puede descomponer los campos eléctricos y magnéticos del campo electromagnético. Pero, en la teoría de la relatividad especial, al tener a un observador con movimiento relativo respecto al sistema de referencia, este medirá efectos eléctricos y magnéticos diferentes de un mismo fenómeno electromagnético. El campo eléctrico y la inducción magnética a pesar de ser elementos vectoriales no se comportan como magnitudes físicas vectoriales, por el contrario la unión de ambos constituye otro ente físico llamado tensor y en este caso el tensor de campo electromagnético.

Electrodinámica cuántica

r

es principalmente una teoría cuántica de campos renormalizada. Su desarrollo fue obra de Sinitiro Tomonaga, Julian Schwinger, Richard Feynman y Freeman Dyson alrededor de los años 1947 a 1949.10​ En la electrodinámica cuántica, la interacción entre partículas viene descrita por un lagrangiano que posee simetría local, concretamente simetría de gauge. Para la electrodinámica cuántica, el campo de gauge donde los fermiones interactúan es el campo electromagnético, descrito en esta teoría como los estados de bosones (fotones) portadores de la interacción.

Aplicaciones

r

Los principios del electromagnetismo encuentran aplicaciones en diversas disciplinas afines, tales como las microondas, antenas, máquinas eléctricas, comunicaciones por satélite, bioelectromagnetismo, plasmas, investigación nuclear, la fibra óptica, la interferencia y la compatibilidad electromagnéticas, la conversión de energía electromecánica, la meteorología por radar, y la observación remota. Los dispositivos electromagnéticos incluyen transformadores, relés, radio/TV, teléfonos, motores eléctricos, líneas de transmisión, guías de onda y láseres.

creación de aparatos electrónicos

Telecomunicaciones

Click here to center your diagram.
Click here to center your diagram.