Kategóriák: Minden - funzioni - dominio

a stefania mercanti 2 éve

421

La funzione

La funzione

La funzione

Link utili

Testi
Video

Esempi di funzione non matematica

Esempi di funzione matematica

Sottoargomento

Studio

Grafico
Studio concavità
Calcolo derivata seconda e ricerca dei punti di flesso
Natura punti stazionari
Max, min, flessi a tangente orizzontale
Calcolo derivata prima e ricerca punti stazionari
Casi particolari di funzioni non derivabili in punti appartenenti al dominio
Limiti agli estremi del dominio
Asintoti

DEFINIZIONE: È una retta a cui tende una funzione in un comportamento limite

obliquo

orizzontale

verticale

Intersezione con gli assi e studio del segno
Simmetrie pari/dispari

Una funzione f(x) viene detta PARI quando per ogni x appartiene al dominio, cioè f(-x)=f(x) quindi ad esempio se noi calcoliamo la funzione in 4 essa deve dare lo stesso valore quando la calcoliamo in -4.

La loro caratteristica è quella di avere il grafico simmetrico rispetto all'asse delle ordinate.


La funzione f(x) è DISPARI se per ogni x appartenente al dominio vale la relazione f(-x)=-f(x) cioè se la funzione di 4 vale 7 allora quando la calcolerò in -4 dovrà valere -7, queste deve valere per ogni coppia di punti che si trovano in posizone simmetrica del dominio.

La loro caratteristica è quella di avere il grafico simmetrico rispetto all'origine.

Dominio

Cioè è l’insieme su cui la funzione è definita.

Tipologie

Trascendente
La quale contiene operazioni trascendenti: logaritmo, esponenziale o le funzioni goniometriche. Si articolano in LOGARITMICHE, GONIOMETRICHE ed ESPONENZIALI.
Algebrica
Nella quale compaiono solo operazioni di tipo algebrico: addizione sottrazione, moltiplicazione, divisione, potenza. Essa può dividersi in: RAZIONALE e IRRAZIONALI che si dividono a loro volta in fratte e intere.

Definizione

E' una relazione tra i due insiemi, A e B. La funzione dell'Insieme A e dell'insieme B è una funzione che ad ogni elemento di A associa uno e uno solo elemento di B.


OPPURE


Dati due insiemi X e Y, si dice funzione da X in Y una relazione che associa ad ogni elemento dell'insieme X, detto dominio, un unico elemento dell'insieme Y detto condominio.