door Инга Подгорная 9 jaren geleden
465
Meer zoals dit
door Шадура Мария
door Павел Саенко
door Ольга Якимчук
door Станислав Диндиков
Последняя скоростная категория — ультрацентрифуги скорость вращения ротора от 2000 об/мин до 150 000 об/мин.
центрифуги с высокой производительностью они же скоростные — решают все возможные лабораторные задачи (кроме ультрацентрифугирования); скорость вращения ротора от 1000 об/мин до 30 000 об/мин.
общелабораторные центрифуги — обладают значительной универсальностью могут работать и с пробирками типа eppendorf и другими емкостями скорость вращения ротора от 200 об/мин до 15 000 об/мин,
Микроцентрифуги (обработка пробирок eppendorf, обычно не требует высоких скоростей) — скорость до 13 400 об/мин,
специализированные центрифуги повышенного объема (обычно до 6 л). Примером специализированных центрифуг служат центрифуги для обработки крови. Устройство такой центрифуги узко специализировано под одну задачу — вращение полиэтиленовых контейнеров с кровью. У такой центрифуги мотор повышенной мощности, однако скорость вращения ротора значительно ниже чем у аналогичной по энергопотреблению центрифуги.
общелабораторные центрифуги (суммарный объём образца около 0,5 л),
Микроцентрифуги (обработка пробирок типа eppendorf, 1,5-2,0 мл каждая),
Дифференциальная интерференционно-контрастная микроскопия (Интерференционно-контрастная микроскопия или микроскопия Номарского (англ.)русск.) — световая оптическая микроскопия, используемая для создания контраста в неокрашенных прозрачных образцах. ДИК микроскоп позволяет определить оптическую плотность исследуемого объекта на основе принципа интерференции и таким образом увидеть недоступные глазу детали. Относительно сложная оптическая система позволяет создать чёрно-белую картину образца на сером фоне. Это изображение подобно тому, которое можно получить с помощью фазово-контрастного микроскопа, но в нём отсутствует дифракционное гало. В ДИК микроскопе поляризованный луч из источника света разделяется на два луча, которые проходят через образец разными оптическими путями. Длина этих оптических путей (т. е. произведение показателя преломления и геометрической длины пути) различна. Впоследствии эти лучи интерферируют при слиянии. Это позволяет создать объемное рельефное изображение, соответствующее изменению оптической плотности образца, акцентируя линии и границы. Эта картина не является точной топографической картиной.
Лазерный рентгеновский микроскоп (XFEL)
Ла́зерная рентге́новская микроскопи́я (flash diffractive imaging, Femtosecond diffractive imaging) — разновидность рентгеноструктурного анализа, основанного на дифракции рентгеновских лучей на исследуемом объекте. В отличие от традиционного рентгеноструктурного анализа, исследуется одиночные молекулы и их сочетания.
Рентгеновские микроскопы проекционныеема
Рентгеновские микроскопы отражательные
Сканирующий туннельный микроскоп
Сканирующий туннельный микроскоп (СТМ, англ. STM — scanning tunneling microscope) — вариант сканирующего зондового микроскопа, предназначенный для измерения рельефа проводящих поверхностей с высоким пространственным разрешением.
Сканирующий атомно-силовой микроскоп
Атомно-силовой микроскоп (АСМ, англ. AFM — atomic-force microscope) — сканирующий зондовый микроскоп высокого разрешения. Используется для определения рельефа поверхности с разрешением от десятков ангстрем вплоть до атомарного. В отличие от сканирующего туннельного микроскопа, с помощью атомно-силового микроскопа можно исследовать как проводящие, так и непроводящие поверхности. Ввиду способности не только сканировать, но и манипулировать атомами, назван силовым.
Растровый электронный микроскоп
Растровый электронный микроскоп (РЭМ, англ. Scanning Electron Microscope, SEM) — прибор класса электронный микроскоп, предназначенный для получения изображения поверхности объекта с высоким (до 0,4 нанометра) пространственным разрешением, также информации о составе, строении и некоторых других свойствах приповерхностных слоёв. Основан на принципе взаимодействия электронного пучка с исследуемым объектом. Современный РЭМ позволяет работать в широком диапазоне увеличений приблизительно от 10 крат (то есть эквивалентно увеличению сильной ручной линзы) до 1 000 000 крат, что приблизительно в 500 раз превышает предел увеличения лучших оптических микроскопов. Сегодня возможности растровой электронной микроскопии используются практически во всех областях науки и промышленности, от биологии до наук о материалах. Существует огромное число выпускаемых рядом фирм разнообразных конструкций и типов РЭМ, оснащенных детекторами различных типов.
Просвечивающий электронный микроскоп
Просвечивающий (трансмиссионный) электронный микроскоп (ПЭМ, англ, TEM - Transmission electron microscopy) — устройство для получения изображения ультратонкого образца путём пропускания через него пучка электронов. Ультратонким считается образец толщиной порядка 0.1 мкм. Прошедший через образец и провзаимодействовавший с ним пучок электронов увеличивается магнитными линзами (объективом) и регистрируется на флуоресцентном экране, фотоплёнке или сенсорном приборе с зарядовой связью (на ПЗС-матрице).
Двухфотонный лазерный микроскоп
Двухфотонный лазерный микроскоп основан на физическом принципе, описанном Марией Гёпперт-Майер в её докторской диссертации[3] в 1931 г. Процесс двухфотонного возбуждения происходит следующим образом: два фотона, обладающие низкой энергией, возбуждают флюорофор (способную к флюоресценции молекулу или часть молекулы) в течение одного квантового события. Результатом этого возбуждения является последующее испускание возбужденными молекулами флюоресцентного фотона. Энергия флуоресцентного фотона больше энергии возбуждающих фотонов. Вероятность того, что оба фотона возбуждения будут поглощены одной молекулой, очень мала. Поэтому необходим большой поток возбуждающих фотонов, который можно получить при помощи лазера, испускающего фотоны с большой частотой следования импульсов (80 МГц). Наиболее часто используемые флюорофоры имеют спектр возбуждения в промежутке 400—500 нм, в то время как длина волны возбуждающего лазера находится в промежутке 700—1000 нм (область инфракрасных волн). Если флюорофор поглотит одновременно два фотона, то он получит достаточно энергии, чтобы перейти в возбужденное состояние. Далее возбужденный флюорофор испустит один фотон (в видимой части спектра), длина волны которого зависит от типа флюорофора. Поскольку для того, чтобы флюорофор перешёл в возбуждённое состояние, необходимо поглощение двух фотонов, вероятность испускания флюорофором вторичного фотона пропорциональна квадрату интенсивности возбуждения. Поэтому флуоресценция будет сильнее в случае, когда луч лазера четко сфокусирован, а не рассеян. Максимальная флуоресценция наблюдается в фокальном объёме (объёме, где сфокусирован луч лазера) и демонстрирует резкое уменьшение в области вне фокуса.
Конфокальный микроскоп
Конфокальный микроскоп — оптический микроскоп, обладающий значительным контрастом по сравнению с обычным микроскопом, что достигается использованием апертуры, размещённой в плоскости изображения и ограничивающей поток фонового рассеянного света.[1]. Эта методика завоевала популярность в научных исследованиях в биологии, физике полупроводников и спинтронике (в частности, в изучении свойств NV-центров).
Ближнепольный оптический микроскоп
оптическая микроскопия, обеспечивающая разрешение лучшее, чем у обычного оптического микроскопа. Повышение разрешения БОМа достигается детектированием рассеяния света от изучаемого объекта на расстояниях меньших, чем длина волны света.[1][2] В случае, если зонд (детектор) микроскопа ближнего поля снабжен устройством пространственного сканирования, то такой прибор называют сканирующим оптическим микроскопом ближнего поля. Такой микроскоп позволяет получать растровые изображения поверхностей и объектов с разрешением ниже дифракционного предела.
Электронные книги (устройства), Современные устройства для чтения применяются также и в образовании. Уже около десяти лет многие зарубежные страны занимаются созданием электронного контента для школы. Например, в Австралии система обучения с использованием электронного устройства находится на стадии формирования, а в Южной Корее уже три года идет обучение учителей работе с электронными пособиями. Что касается России, то весной 2013 года в 75 школах был проведен эксперимент длительностью в 60 дней, на основании которого учителя смогли сделать вывод о положительной динамике использования электронных учебников в образовательном процессе. Однако было отмечено, что проект нуждается в доработке. До 2015 года было проведено еще несколько стадий тестирования, по результатам которых, согласно принятому закону, с 1 января 2015 года все российские школы обязаны перейти на те учебники, для которых будет выпущена электронная версия[7]. Преимущества использования электронных книг в образовании управление учебным процессом за счет взаимодействия мобильных устройств учащихся и учителя организация индивидуальной поддержки каждого ученика на основании информации о результатах его продвижения по учебному материалу организация сетевого взаимодействия участников для формирования навыков учебного сотрудничества, коммуникативной компетентности Недостатки использования электронных книг в образовании устройства для чтения электронных учебников гораздо чувствительнее к физическому повреждению, чем бумажные учебники устройства для чтения электронных учебников требуют периодической подзарядки встроенных аккумуляторов (батарей) высокая начальная стоимость (по сравнению с бумажным носителем)
Планшетные ПК, Главная отличительная особенность данного семейства ПК — это аппаратная совместимость с IBM PC-компьютерами и установленные на них полноценные операционные системы, используемые на настольных компьютерах и ноутбуках
Linux (полная настольная сборка одного из вариантов этой ОС).
Apple Mac OS X;
семейство Microsoft Windows NT (Windows XP Tablet PC Edition, Windows 7, Windows 8, Windows 10);
Нетбук (англ. Netbook; net-сеть (Интернет), book-книга) — субноутбук с относительно невысокой производительностью, предназначенный в основном для выхода в Интернет. Обладает небольшой диагональю экрана в 7—12 дюймов, низким энергопотреблением, небольшим весом и относительно невысокой стоимостью. По габаритам и функциональности нетбуки занимают промежуточное положение между мобильными интернет-устройствами (MID) и Handheld PC «снизу» и субноутбуками «сверху». От UMPC нетбуки отличаются компоновкой и, как правило, использованием обычных экранов, нечувствительных к касанию. Этот момент является спорным, некоторые производители и эксперты относят нетбуки и субноутбуки к классу UMPC. Для большинства пользователей наиболее очевидными отличиями от «обычных» субноутбуков будут: меньшие габариты, отсутствие оптического привода (практически всегда) и наличие веб-камеры с микрофоном.
Смартбук (англ. Smartbook) — небольшой ноутбук, построенный на аппаратной платформе того же класса, которая используется для смартфонов и интернет-планшетов. Ключевая особенность — архитектура процессора. В нетбуках и ноутбуках применяются процессоры семейства x86 или его потомка x86-64, в смартбуках почти всегда процессоры семейства ARM, также встречаются машины на процессоре MIPS, в основном на рынке Китая. Для процессоров одинаковой производительности ARM оказывается значительно экономичнее в сравнении с x86. Термин введён компанией Qualcomm. Следует отметить, что первоначально в термин «смартбук» вкладывался иной смысл. Предполагалось так назвать устройство для коммуникации аналогичное смартфону, но которое имело бы клавиатуру, пригодную для набора длинных текстов и писем, а не только СМС. Предполагаемая аудитория — пользователи, которым не требуется полная функциональность ПО для стационарных ПК (десктопов). В качестве ключевых особенностей компания Qualcomm рассматривала не только использование аппаратной платформы смартфонов, но и обязательное наличие ряда коммуникационного оборудования для работы в различных беспроводных сетях — GSM, 3G, Wi-Fi, Wi-Max, а также использование специальной ОС. При этом архитектура может быть любой, в том числе x86. Таким образом, по мнению автора термина, смартбук — это смартфон, выполненный в большем форм-факторе[1].