jonka David Kedrowski 15 vuotta sitten
384
Lisää tämän kaltaisia
luonut Yunlei Betty Lu
luonut Joe Russo
luonut Jared Leiker
luonut Barb lynch
To differentiate an implicitly defined function one must use the chain rule on all terms involving y.
d dy
---[ f(y) ] = f'(y) ----
dx dx
Explicit: y = f(x)
Implicit: y and f(x) are mixed together
p. 136
If y = [u(x)]^n, where u is a differentiable function of x and n is a rational number, then
dy du
--- = n[u(x)]^{n-1} ---
dx dx
or, equivalently
d
---[u^n] = n*u^{n-1} u'
dx
d
---[ sin u ] = (cos u) u'
dx
d
---[ cos u ] = -(sin u) u'
dx
d
---[ tan u ] = (sec^2 u) u'
dx
d
---[ cot u ] = -(csc^2 u) u'
dx
d
---[ sec u ] = (sec u tan u) u'
dx
d
---[ csc u ] = -(csc u cot u) u'
dx
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, then y = f(g(x)) is a differentiable function of x and
dy dy du
--- = --- * ---
dx du dx
or, equivalently
d
---[ f(g(x)) ] = f'(g(x)) g'(x)
dx