par David Kedrowski Il y a 14 années
359
Plus de détails
par Wafiqah Wahab
par Joe Russo
par Kaleigh Gleason
par Lina Fahimah Ali
To differentiate an implicitly defined function one must use the chain rule on all terms involving y.
d dy
---[ f(y) ] = f'(y) ----
dx dx
Explicit: y = f(x)
Implicit: y and f(x) are mixed together
p. 136
If y = [u(x)]^n, where u is a differentiable function of x and n is a rational number, then
dy du
--- = n[u(x)]^{n-1} ---
dx dx
or, equivalently
d
---[u^n] = n*u^{n-1} u'
dx
d
---[ sin u ] = (cos u) u'
dx
d
---[ cos u ] = -(sin u) u'
dx
d
---[ tan u ] = (sec^2 u) u'
dx
d
---[ cot u ] = -(csc^2 u) u'
dx
d
---[ sec u ] = (sec u tan u) u'
dx
d
---[ csc u ] = -(csc u cot u) u'
dx
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, then y = f(g(x)) is a differentiable function of x and
dy dy du
--- = --- * ---
dx du dx
or, equivalently
d
---[ f(g(x)) ] = f'(g(x)) g'(x)
dx