por David Kedrowski hace 14 años
359
Ver más
por Joe Russo
por Stephen Sciacca
por caleb Ramos
por Auckbaraullee Bilkiss
To differentiate an implicitly defined function one must use the chain rule on all terms involving y.
d dy
---[ f(y) ] = f'(y) ----
dx dx
Explicit: y = f(x)
Implicit: y and f(x) are mixed together
p. 136
If y = [u(x)]^n, where u is a differentiable function of x and n is a rational number, then
dy du
--- = n[u(x)]^{n-1} ---
dx dx
or, equivalently
d
---[u^n] = n*u^{n-1} u'
dx
d
---[ sin u ] = (cos u) u'
dx
d
---[ cos u ] = -(sin u) u'
dx
d
---[ tan u ] = (sec^2 u) u'
dx
d
---[ cot u ] = -(csc^2 u) u'
dx
d
---[ sec u ] = (sec u tan u) u'
dx
d
---[ csc u ] = -(csc u cot u) u'
dx
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, then y = f(g(x)) is a differentiable function of x and
dy dy du
--- = --- * ---
dx du dx
or, equivalently
d
---[ f(g(x)) ] = f'(g(x)) g'(x)
dx