によって Wafiqah Wahab 5年前.
364
RULE OF DIFFERENTIATION
開く
ASSIGNMENT 2 - PRE FINAL BUSINESS MATHEMATICS II
NAME : WAFIQAH BINTI WAHAB
NO. MATRIC : 052870
PROGRAMME : DIPLOMA IN BANKING
LECTURE NAME : MADAM HARDAYANNA ABD RAHMAN
DUE DATE : THURSDAY, 9 JULY 2020 RULE OF DIFFERENTIATION Main topic RULE 5 : CHAIN RULE = 15 (3x - 3)4 = 5 (3x - 3)4 (3) Solution : f' (x) = 5 (3x-3)4 (3x-3)1 Example : f (x) = (3x - 3)5 f' (x) = n (ax + b)n-1 (ax + b)1 f (x) = (ax + b)n RULE 6 : PRODUCT RULE = -24x2 + 20x + 12 = -16x2 + 20x - 8x2 + 12 f' (x) = (4x - 5)(-4x) + (-2x2 + 3)(4) v' = -4x v = -2x2 + 3 u' = 4 Solution : u = 4x - 5 Example : (4x - 5) (-2x2 + 3) f' (x) = uv' + vu' h(x) = u, g(x) = v f (x) = h(x)g(x) RULE 7 : QUOTIENT RULE = 3 / (2x +1)2 = 6x + 3 - 6x / (2x + 1)2 f' (x) = (2x + 1)3 - 3x(2) / (2x + 1)2 v' = 2 v = 2x + 1 u' = 3 Solution : u = 3x Example : 3x / 2x + 1 f'(x) = vu' - uv' / v2 h(x) = u, g(x) f (x) = h(x) / g(x) RULE 4 : SUM RULE Solution : f' (x) = 4x3 + 4 Example : f (x) = x4 + 4x f (x) = h' (x) + g' (x) f (x) = h (x) + g (x) RULE 3 : POWER RULE Solution : 9x8 Example : x9 f' (x) = nxn-1 f (x) = xn Solution : f' (x) = 8 Example : f (x) = 8x f' (x) = m f (x) = mx RULE 1 : CONSTANT RULE Solution : f' (x) = 0 Example : f (x) = 13 f' (x) = 0 y = f (x) = c