by ARTURO RAMIREZ HERNANDEZ 5 years ago
1521
More like this
by Marìa Gisela Martínez Parra
by Abril Fernández Pedraza
by SONIA YANETH FAJARDO OROZCO
by Deisy Yolanda Amortegui Sanchez
1.(u,v) = (v,u). 2. α (u,v) = ((α u), v) = (u,( α v)). 3. (u + v, w) = (u, w) + (v , w) 4. (u, u) ≥ 0 y (u, u) = 0 si y sólo si u = 0
La base y la dimensión dotan al espacio vectorial con un sistema de referencia, en el cual puede ubicarse cada vector del espacio. Como la base no es única, puede definirse una infinidad de sistemas de referencia dentro del mismo espacio vector-rial.
Conjunto ortonormal en Rn Se dice que un conjunto de vectores S= {u1, u2,…, uk} en Rn es un conjunto ortonormal si (1) (2) es un algoritmo para construir, a partir de un conjunto de vectores de un espacio vectorial con producto interno, otro conjunto ortonormal de vectores que genere el mismo subespacio vectorial. El proceso se basa en un resultado de la geometría euclídea, el cual establece que la diferencia entre un vector v y su proyección sobre otro vector v , es perpendicular al vector u₁. Dicho resultado constituye una herramienta para construir, a partir de un conjunto de dos vectores no paralelos, otro conjunto, conformado por dos vectores perpendiculares.
IMPORTANCIA DEL TEMA
Es importante este tema ya que nos da a conocer como el espacio vectorial tiene relación con otras areas de las matematicas y como se aplica en las mismas
1) El vector cero de V está en H.2 2) H es cerrado bajo la suma de vectores. Esto es, para cada u y v en H, la suma u + v está en H 3) H es cerrado bajo la multiplicación por escalares. Esto es, para cada u en H y cada escalar c, el vector cu está en H.
Un conjunto es linealmente independiente si no existen combinaciones lineales entre sus vectores; es decir, cada vector existe por sí mismo dentro del conjunto. En otra forma, si al combinar linealmente los elementos del conjunto en la forma.