Kategorier: Alle - theorem - functions - polynomial - continuity

av David Kedrowski 15 år siden

586

MAT.126 1.4-1.5

MAT.126 1.4-1.5

MAT.126 1.4-1.5

1.5 Infinite Limits

Find and sketch the vertical asymptotes of the graph of a function

If f(x) approaches infinity (or negative infinity) as x approaches c from the right or the left, then the line x=c is a vertical asymptote of the graph of f.

Subtopic
Theorem 1.14 Vertical Asymptotes

Let f and g be continuous on an open interval containing c. If f(c) is not zero, g(c) is zero, and there exists an open interval containing c such that g(x) is not 0 for all x not c in the interval, then the graph of the function given by

h(x) = f(x) / g(x)

has a vertical asymptote at x=c.

Determine infinite limits from the left and from the right

Let f be a function that is defined at every real number in some open interval containing c (except possibly at c itself).

The statement the limit of f(x) as x approaches c equals positive infinity means that for each M>0 there exists a delta>0 such that f(x)>M whenever 0<|x-c|<delta.

The statement the limit of f(x) as x approaches c equals negative infinity means that for each N<0 there exists a delta>0 such that f(x)<N whenever 0<|x-c|<delta.

To define the infinite limit from the left, replace 0<|x-c|<delta by c-delta<x<c.

To define the infinite limit from the right, replace 0<|x-c|<delta by c<x<c+delta.

1.4 Continuity and One-Sided Limits

Understand and use the Intermediate Value Theorem
Theorem 1.13 Intermediate Value Theorem

If f is continuous on the closed interval [a,b], f(a) is not equal to f(b), and k is any number between f(a) and f(b), then there is at least one number c in [a,b] such that f(c)=k.

The method of bisection depends on the intermediate value theorem and therefore on the continuity of polynomials (and other functions).

This is an example of an existence theorem, a theorem that states that something exists but does not provide a method for finding that which does exit.

Use properties of continuity
Theorem 1.12 Continuity of a Composite Function
Functions Continuous At Every Point in Their Domain

Polynomial

Rational

Radical

Trigonometric

Theorem 1.11 Properties of Continuity

See your text, p. 75

Determine one-sided limits and continuity on a closed interval
Continuity on a Closed Interval

A function f is continuous on the closed interval [a,b] if it is continuous on the open interval (a,b) and the limit from the right of f(x) as x approaches a is equal to f(a) and the limit from the left of f(x) as x approaches b is equal to f(b).

The function f is continuous from the right at a and continuous from the left at b.

Theorem 1.10 The Existence of a Limit

Let f be a function and let c and L be real numbers. The limit of f(x) as x approaches c is L if and only if the limit from the left of f(x) as x approaches c is L and the limit from the right of f(x) as x approaches c is L.

One-sided Limits

Limit from the left

Also called a left-hand limit.

Refers to a limit where x approaches c only from values less than c (to the left of c on a number line or on the x-axis).

Limit from the right

Also called a right-hand limit.

Refers to a limit where x approaches c only from values greater than c (to the right of c on a number line or on the x-axis).

Determine continuity at a point and continuity on an open interval
Discontinuities

Consider a function f, defined on an open interval I containing c (except possibly at c). This function is said to be discontinuous at c if any one of the following are true:


  • The function f is not defined at x=c.
  • The limit of f(x) does not exist at x=c.
  • The limit of f(x) exists at x=c, but it is not equal to f(c).
  • Nonremovable

    A discontinuity at c is called nonremovable if f cannot be made continuous by appropriately defining (or redefining) f(c).

    Removable

    A discontinuity at c is called removable if f can be made continuous by appropriately defining (or redefining) f(c).

    Continuity: Formal

    On an Open Interval

    A function is continuous on an open interval (a,b) if it is continuous at each point in the interval.

    A function that is continuous on the entire real line is everywhere continuous.

    At a Point

    A function f is continuous at c if the following three conditions are met.

    1. f(c) is defined.

    2. The limit of f(x) as x appraches c exists.

    3. The function value and the limit value are equal.

    Continuity: Informal

    To say that a function f is continuous at x=c means that there is no interruption in the graph of f at c.

    That is, its graph is unbroken at c and there are no holes, jumps, or gaps.