Kategorie: Wszystkie - izquierda - continuidad - límite - intervalo

przez Neftalí Diaz 5 lat temu

324

continuidad de una función compuesta

continuidad de una función compuesta

continuidad de una función compuesta

continuidad de un intervalo

Una función f definida en un intervalo, es continua en el intervalo si: Ø f es continua para todo x tal que Ø f es continua por la derecha en ¨a¨ Ø f es continua por la izquierda ¨b¨
Es decir

La representación gráfica de esta función es la siguiente: También se tiene que una función definida en el intervalo , es continua en ese intervalo, si y solo si es continua en el intervalo abierto y es continua por la derecha de "a". Similarmente, para que una función definida en el intervalo sea continua en ese intervalo, es necesario que sea continua en el intervalo abierto y a la vez que sea continua por la izquierda en "b".

Continuidad en un intervalo abierto: Una función f es continua en un intervalo abierto (a,b) si lo es en todo número del intervalo. Continuidad en un intervalo por la izquierda: Una función f es continua por la izquierda en el punto x = x1 si el límite lateral por la izquierda y el valor de la función en el punto son iguales. Continuidad en un intervalo por la derecha:Una función f es continua por la derecha en el punto x = x1 si su límite lateral por la derecha y el valor de la función en el punto son iguales.

Ø f es continua en x= a Ø g es continua en x= f (a) Ø f o g serán continuas en x= a

demostracion
Queremos demostrar que limx->a g [f(x)] = g [f(a)], o sea, por definición de límite, queremos probar que, dado ε>0 existe δ>0 tal que para todo x perteneciente al E*a,δ g[f(x)] perteneciente al Eg[f(a)],ε. Por hipótesis g es continua en f (a) => por definición de continuidad limx->f(a) g(x)=g[f(a)] => por definición de límite, dado ε>0 existe δ>0 tal que... Para todo x perteneciente al E*f(a),δ g(x) pertenece al Eg[f(a)],ε (1) Por hipótesis f es continua en a tenemos por definición de continuidad limx->a f (x) = f (a), es decir que (por definición de límite) si tomamos el número δ de (1), existe α>0 tal que... Para todo x perteneciente al E*a,α f(x) pertenece al Ef(a),δ (2) De (1) y (2) se deduce que: Dado ε>0 existe α>0 / para todo x perteneciente al E*a,α g[f(x)] pertenece al Eg[f(a)],ε.