Kategorie: Wszystkie - vectores - lineal - generador - transformación

przez Anthony Sosa 3 lat temu

700

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES

Transformaciones Lineales (L)

Matriz de rotación
Los ejes x, y son denotadas con el ángulo \alpha, es decir, el resultado son dos ejes perpendiculares pero notados con un ángulo \alpha.

Px = OB – AB Px = pu cos α - pu sin α Py = AA’ + A’P Py = pu sin α + pu cos α Luv=cos α-sin αsin α cos αuv= px py

Condiciones para que L sea una transformación lineal
Sean v, w dos espacios vectoriales; una transformación lineal de v en w es una función que asigna a cada vector elemento de v un ÚNICO vector elemento de w, L(u) cumple con las siguientes condiciones:

2. L(k u) = k(L u); k es un escalar u ∈ V; L(u) ∈ W

1. L(u + v) = L(u) + L(v); u, v ∈ V , L(u), L(v) ∈ W

L: U -> W u -> L(u) u, w espacios vectoriales
C. Primitivo
Toda va de acuerdo a la necesidad

SIGLO XX

Base de un espacio vectorial

Bases ortogonales y ortonormales en un espacio vectorial
Bases ortonormales: Sea S = {v1, v2, v3, ….,vk} elementos del espacio vectorial V, S representa a una base ortonormal de v Si el conjunto w = { u1, u2, u3, ….., u4} en el que: - U1: es el conjunto unitario de v1 - U2: es el conjunto unitario de v2 - U3: es el conjunto unitario de v3 - Uk: es el conjunto unitario de vk Son ortonormales
Bases ortogonales: Sea S ={v1, v2, v3, ….,vk} elementos del espacio vectorial V, S representa base ortogonal si el producto entre vectores diferentes es cero • Ortogonal representa perpendicularidad para R² y R³
Vector unitario (u): es un vector de “magnitud”, “extensión”, “longitud” 1 (modulo uno) u = v/|√v|
Los vectores v1, v2, v3, …, vk elementos de un espacio vectorial V, representan una base de V si cumple dos condiciones
2. v1, v2, v3, …, vk sea linealmente independientes
1. v1, v2, v3, …, vk generen a V
Construcción de bases ortogonales y ortonormales
Este proceso denominado Gram Schmidt forma una base que no es ortogonal ni ortonormal para construir de forma interactiva una nueva base ortogonal y ortonormal, su proceso se fundamenta en diferentes teoremas

• Si s = {u1, u2, u3, …, uk} una base en R^n y v en vector elemento de R^n, entonces v = c1u1 + c2u2 + c3u3 + …. + ciui + …. + cnun donde las constantes: Ci = VUi 1 ≤ i ≤ n

Corolario: Sea S = {u1, u2, u3, …, ui, ….un} una base de R^n y v un vector elevado de R^n, entonces: • V = c1u1 + c2u2 + c3u3 + …. + ciui + …. + cnun donde las constantes: Ci = VU1/U1 x U1 1 ≤ i ≤ n En el que S es una base ortogonal

Proceso de construcción Gram Schmidt

3. Una vez obtenidos v1, v2, v3, …, vi -1 que forman parte de la base ortogonal, se construyen o determinan w1, w2, w3, …, wi-1 elementos de la base ortonormal W1 = v1/|v1| W2 = v2/|v2| Wi-1 = vi-1/|vi-1| Unitarios de la base ortonormal T = {w1, w2, w3, …, wi-1} base ortonormal

2. vi = ui – (ui x v1/v1 x v1)v1 – (ui x v2/v2 x v2)v2 - (ui x v3/v3 x v3)v3 …. - (ui x v-1/ v-1 x v-1) v-1 Ui es elemento de la base S no ortogonal V1. V2, V3, …… Vi forman parte de la nueva base ortogonal

1. Consideramos U1 = V1 U es elemento de la base s no ortogonal

+: Suma vectorial X: Producto escalar por un vector K: Cuerpo

Si el conjunto (cuerpo) son reales, entonces el espacio vectorial son E.U reales (U, R, +, x)

Teorema

CONCENTRACIÓN DEL PODER POLÍTICO

Sea w un conjunto vacío y v un espacio vectorial con los operadores + y x, entonces w es un espacio vectorial si y solo si cumple con: u x v ∈ W; Para todo u, v ∈ W c x u ∈ W; Para todo u ∈ W, c ∈ W

Sea w un espacio vectorial y w subconjunto de V en un espacio vectorial, entonces w se denomina subespacio vectorial

Para que el conjunto del producto U sea un espacio vectorial real, se debe cumplir dos propiedades con respecto a + y con respecto a x

2. Sea c, d ∈ R, u, v ∈ V cerradura respecto al producto: c(u + v) = c x u + c x v (c + d) x u = c x u + d x u c x (d x u) = (c x d) x u Existe el 1, talque: 1 x u = u x 1 = u

1. Sea x, v ∈ V entonces u + v ∈ V cerradura respecto a la suma: u + v = v + u u + (v + w) = (u + v) + w Existe un elemento cero (0) en V tal que: 0 + u = u + 0 = u Para todo u ∈ V, existe -u ∈ V, tal que: u + (-u) = 0

Se encuentran formados por dos conjuntos y dos operaciones. El primer conjunto contiene los vectores y el segundo conjunto que se denomina cuerpo es en donde se definen + y x
Combinación lineal
Sean los vectores v1, v2, v3, ……, vk elementos de un espacio vectorial V, entonces cualquier elemento v de V es combinación lineal de v1, v2, v3, …… , vk si existen constantes no todas igual a cero (0) tal que: v = c1v1 + c2v2 + c3v3+ ……. + ckvk c1, c2, c3, ……, ck constantes

Linealmente dependientes o independientes

Generador

Sea s = {v1, v2, v3, ………, vk} un conjunto de vectores, es un espacio vectorial v, entonces el conjunto de todos los vectores en V que son combinación lineal de v1, v2, v3, …., vk se llama conjunto generador Gen(s) = gen(v1, v2, v3, ……, vk)

Procedimiento: Colocar un vector representativo de v por ejemplo: V = R³ (n1, n2, n3) ∈ V (k1, k2, k3) ∈ V n1, n2, n3 ∈ R k1, k2, k3 ∈ R

• Los vectores v1, v2, v3, …, vk elementos de un espacio vectorial V son linealmente dependiente si las constantes c1, c2, c3, …, ck NO TODAS iguales a cero (0) C1v2 + c2v2 +c3v3 + ……. + ckvk = 0

• Si los únicos valores de c1, c2, c3, …, ck son cero (solución trivial) entonces v1, v2, v3, …, vk son linealmente independientes c1 = c2 = c3 = … = ck = 0