作者:Sandra Hidalgo Cepeda 6 年以前
1133
更多类似内容
Aditivo-sustractivos
Problemas de cambio Cantidad inicial+modificación =Cantidad final
Cantidad final es mayor reunión o agregado
C inicial ? + modificación =C final
C final -Modificación =C inicial
C inicial+ modificación ?= C final
C final- C inicial=Modificación
C inicial+Modificación=C final ?
Cantidad inicial es mayor Disgregación
C inicial- Modificación= C final ?
C inicial? =C final+Modificación
C inicial- Modificación ?= C final
Problemas de igualación
Tantos como, igual que
Problemas de comparación entre dos cantidades
Ser menor que
Ser mayor que
Problemas de clase parte-parte-total
C1+C2=Conjunto total Relación de conjuntos
Total desconocido
C1+ C2= Ct ?
Una parte desconocida
Ct-C1=C2
CT-C2=C1
Problemas heuríticos con la suma
Propiedad conmutativa y asociativa de la adición
Plantear situaciones problémicas fáciles de solucionar
2. Con estos datos se puede proceder a plantear problemas y dar solución a ellos
1. Planear una operación algorítmica completando una igualdad que a partir de ella se establece una diferencia.
Mutiplicación-división
Clases de producto
Producto cartesiano
Producto de medidas
Dos conjuntos diferentes
Sumandos iguales
Se clasifican en
Repartos equitativos
repartirse en grupos iguales
situaciones
3 númerr de grupos ?.
2. número de elementos por cada grupo ?
operación división
1. cantidad que se reparte ?
operación es un producto
Comparación multiplicativa
Cuantificadores
Veces menos que
Veces más que
De razón
medida de tres magnitudes
Problemas heurísticos con la relación entre la adición y la multiplicación
Utilizando
Propiedad del producto
conmutativa
Distributiva
Asociativa
Tablero de las tiras de suma de Montessori
Utilizando la calculadora para verificar
Comparando resultado con el símbolo + y x
Problemas que se pueden proponer
familia de un natural
Extender las familias numéricas a cantidades de dos cifras
Descubrir relaciones
Definición de diferencia
Comparando cantidades y resolviendo igualdades
Utilizando las regletas de Cuisenaire
Pidiendo que resuelva interrogantes con
Asociaciones y valor posicional
Pedir a los estudiantes que agrupen los asociados por parejas
asociados por diferencia
planeando situaciones de suma o diferencia utilizando el cero
Nunca anunciar la propiedad modulativa de la suma
Diferencias aritméticas teniendo en cuenta el orden de la escritura
contexto de igualdades en diferentes situaciones
Utilizando expresiones como mayor o menor
Plantear situaciones problémicas a partir de de una igualdad
problemas combinados la suma o resta con la multiplicación o la división
Problemas combinados fraccionados
Incluyen al final del texto dos o más preguntas concatenadas
Suma de problemas de primer nivel
Problemas combinados puros
Mismo campo Operativo conceptual
Adición-sustracción
Multiplicación-División
Subtema
Problemas combinados mixtos
Campos conceptuales diferentes
Descubrir
Plan de solución
Ordenando de una estructura a la otra
Relaciones aditivas y multiplicativas
Problemas directos
Orden lógico
Problemas indirectos
Se deben ordenar
En función de una pregunta clave
Análisis de situaciones como herramienta heurística
Interpretar mediante igualdades númericas oraciones
Establecer igualdad
Datos expresados en decimales, fracciones o porcentuales
Fracciones
Estrategia
Regletas de Cuisenaire
Inducen el concepto de mínimo común múltiplo
actividades de ensayo y error
Modelo conjuntista
Comparan partes en con relación a un todo
Porcentaje
Son de tres clases
3. Se conoce el total y la parte de la segunda unidad
Se desea conocer la parte del porcentaje
2.Se conoce el porcentaje de la unidad y el total de la otra
Se debe hallar esa parte
1.Se conoce el Porcentaje de la unidad y la parte de la otra
Se debe hallar el total de la otra parte
Hallar
Un tanto porciento
cantidades
Resultante al efectuar un aumento o disminución porcentual
Razón
Par ordenado de números usados para establecer comparación entre las cantidades que representen.
Comparan unidades diferentes
Proporción
Igualdad entre dos razones
Primer actividad
Relacionando medidas diferentes
Producto de los extremos= Producto de los medios
Regla de tres
Inversa
Una cantidad aumenta y la otra disminuye o viceversa
Directa
Cantidades aumenta o disminuyen en la misma proporción
Desarrollo humano pensamiento lógico inductivo y deductivo
Desequlibrio
Nivel 4
Desautomatización
Recurrencia a los niveles anteriores
Nivel 3
Nuevos Conceptos
Fijación
Automatización
Interiorización
Reacomodo
Entre el segundo y tercer nivel
Proceso de Asimilación Desarrollo próximo
Relación entre el aprendiz y el experto
Nivel 2
Ayuda del mismo sujeto
Reconstruida, reconquistada o redescubierta la verdad
Verificar soluciones
Explorar y verificar conjeturas
Visulaizar, resolver problemas
Acceder, procesar la información
Nivel 1
Ayuda de otros
familiares, maestros, condíscipulos
Características
Estructurales
sirven para formalizar el pensamiento
Establece hipótesis
Uitiliza
Negación
equivalencia
Implicación
Disyunción
Conjunción
Funcionales
enfoques y estrategias para abordar problemas
Carácter hipotético deductivo y proposicional
Conceptos abstractos
Abstracciones simbólicas del álgebra
Demostraciones
Teoremas
Análisis de la ecuación
Ecuaciones con una incógnita
Modelos matemáticos
Utilzando
Reglas de cuisenaire
Problemas sobre áreas y perímetros
Utilizando regla y compás
Construir segmentos
longitudes
suma
diferencia
producto
Cociente
Raíz cuadrada
a través de la aplicación
De control de variables
Donde sea fácil eliminar una de las variables
Mediante la ejecución combinada de
operaciones algebraicas elementales
Sustracción
Adición
computador
calculadoras
Adopción de protagonismo
Sesiones más largas
Orden de actividades
3. si hay dificultades
El docente expresará verbalmente
Procesos mentales
al inicio y hasta terminar la resolución
las diferentes fases con
razonamiento
pensamientos
2. De reconocimiento y aplicación de fases
Comprobación del resultado
Ejecución
Planificación
Comprensión
1. de entrenamiento
Capacidad de comprensión de las situaciones
Cómo se crear:
3. Deducir qué se puede calcular a partir de unos datos conocidos
2. Separar los datos y las incógnitas
1. Decir lo mismo pero con diferentes palabras
trabajo en conjunto con el profesor
Graduar la adaptación
Prepara sesiones no muy largas
Prácticamente
psicológicamente
Análisis del problema
facilitando
Lectura analítica
Comunicación oral
Formulación del problema
Objetos de conocimiento matemático
Creencias
Desfavorables
Favorables
Control o metacognición
Heurística
Técnicas
Estrategias
Recursos
Concimientos Previos
fórmulas
procedimientos
conceptos
4.Volver al problema, la respuesta y el método de solución.
Docente establece un segundo modelo para orientar una discusión
3.Desarrollar el problema
2.confeccionar una estrategia de solución
1. Entender el problema
Clasificar
Datos
condición
Incógnita
Creador
Principio de la no contradicción