CLASIFICACION DE NUMEROS REALES
A noun is a word that functions as the name of some specific thing or set of things, such as living creatures, objects, places, actions, qualities, states of existence, or ideas.
Números Reales (R)l
Abarca todos los números anteriores, incluyendo los racionales y los irracionale
Números Irracionales (I):
Compound nouns are words where two nouns have been stuck together to make a new noun. Compound nouns should be written as one word, without a hyphen.
Son aquellos que no pueden ser expresados como fracción, y suelen tener infinitas cifras decimales no periódicas (ej: √2, π
Números Racionales (Q):
Generic nouns are nouns that are part of a generic statement. Generic nouns can be singular or plural. The opposite of generic nouns is collective nouns.
The difference between definite/indefinite and generic nouns is that in the sentence there must be a blanket statement or question.
Son aquellos que pueden ser expresados como una fracción (p/q), donde p y q son enteros y q es diferente de cero. (ej: 1/2, 0.5, 3/4).
Números Enteros (Z):
Proper nouns are the names of specific people or places. They should always begin with a capital letter.
Incluyen los números naturales, el cero y los negativos de los naturales (-3, -2, -1, 0, 1, 2, 3...)
Números Naturales (N)
A concrete noun is a noun that can be identified through one of the five senses (taste, touch, sight, hearing, smell).
Son los números usados para contar, desde 1 hasta infinito (1, 2, 3, 4...)
Distributiva
a × (b + c) = a × b + a × c
Ejemplo: 2 × (3 + 4) = 2×3 + 2×4 = 14
Elemento inverso
a + (−a) = 0
a × (1/a) = 1 (si a ≠ 0)
Ejemplo: 5 + (−5) = 0; 3 × (1/3) = 1
Elemento neutro
Ejemplo: 7 + 0 = 7; 4 × 1 = 4
a × 1 = a
a + 0 = a
Propiedad asociativa
Ejemplo: (2 + 3) + 4 = 2 + (3 + 4) = 9
(a × b) × c = a × (b × c)
(a + b) + c = a + (b + c)
Propiedad conmutativa
Ejemplo: 3 + 5 = 5 + 3 = 8
a × b = b × a
a + b = b + a
Propiedades de los Números Reales
Possessive nouns are nouns which possess something, normally another noun.